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Growth and translation of a liquid-vapour 
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Part 1. Fluid mechanics 
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The fluid dynamics associated with a compound drop consisting of a vapour bubble, 
partly surrounded by its own liquid in another immiscible liquid is considered. The 
fluid motion is analysed in the limit of Stokes flow and at  the same time the surface 
tension forces are considered to be large enough to allow the interfaces to have 
uniform curvature. The flow field consists of translation and growth that can arise 
from change of phase. 

An exact analytical solution for the axisymmetric flow field is obtained. The 
important results of physical interest are the drag force and the flow behaviour. In  
the case without growth, the drag force lies between the bubble and the solid-sphere 
limits for a sphere of the same volume as the total liquid and vapour dispersed phase. 
The maximum drag force is observed when the liquid and vapour volumes are nearly 
the same. This is the effect of weak circulation due to the smaller available space as 
compared with a spherical drop. With growth this effect appears to be enhanced. The 
flow streamlines exhibit secondary vortices in the dispersed phase when there is 
growth. The velocity field and the drag results here are applied to the heat transfer 
problem for the compound drop in Part 2 of this two-part series. 

1. Introduction 
The study of compound multiphase droplets has been of great interest in recent 

years because of its wide range of applications in many fields of engineering. We 
encounter these drops in processes such as direct-contact heat exchange, liquid- 
membrane technology and the melting of ice particles in the atmosphere. Chambers 
& Kopac (1937) and Kopac & Chambers (1937) studied the subject of compound 
drops in connection with the coalescence of living cells and oil drops. Their work was 
subsequently followed by other researchers. Li & Asher (1973) developed the idea of 
coating drops and bubbles with liquid membranes for application in separation 
processes such as artificial blood oxygenation. Compound drops are also formed when 
direct-contact heat exchange takes place with a change of phase. Generally, drops of 
one liquid are passed through another immiscible liquid and this results in an efficient 
exchange of heat between the two liquids. If, say, the dispersed phase undergoes a 
phase change so that both the liquid and the vapour coexist for some time, then we 
have a compound drop. There have been numerous theoretical as well as experimental 
studies in this area. For example, Sideman & Hirsch (1965) ; Sideman, Hirsch & Gat 
(1965) ; Sideman & Gat (1966) ; Mercier et al. (1974) ; Hayakawa & Shigeta (1974) ; 
Tochitana, Mori & Komotori ( 1 9 7 7 ~ )  and Tochitana et al. (1977b) have experi- 
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FIGURE 1 .  Configuration of a partially engulfed liquid-vapour compound drop. 

mentally studied the fluid mechanics associated with such drops. However, little 
progress had been made in terms of the theoretical fluid mechanics until recently. 
The first thorough theoretical treatment of the static two-fluid compound drop 
configuration was carried out by Torza & Mason (1970) for studying three-phase 
interactions. Their analysis was restricted to static drops in the absence of gravity. 
Other theoretical studies of translation include that of Rushton & Davies (1983) who 
considered a compound drop consisting of concentric spheres. Recent theoretical 
studies on such fluid dynamics includes the analysis by Johnson &, Sadhal (1983). 
They examined translating drops and bubbles partially coated with thin films by 
applying lubrication theory. They also gave an extensive review of the fluid 
mechanics of compound drops and bubbles (see Johnson & Sadhal 1985). The 
problem of the fluid mechanics of a compound drop consisting of a liquid drop or a 
gas bubble completely coated by another liquid, moving in a third immiscible fluid 
(2-singlet configuration) was investigated theoretically by Sadhal &, Oguz (1985). 
They also examined the stability of the dynamic equilibrium of the inner drop with 
respect to the whole compound drop. In  a later development, Oguz &, Sadhal (1987) 
included the heat transfer for an evaporating or condensing drop. 

The evaporation of a liquid drop into a vapour bubble can occur in three different 
configurations : non-engulfing, complete engulfing and partial engulfing (see 
Avedisian & Andres 1978). The prevalence of a particular equilibrium configuration 
can be best explained by the pure mechanics of balancing the surface tensions which 
depend largely on the types of fluids making up the system. This subject has been 
discussed by Torza & Mason (1970) extensively for a static compound drop and later 
elaborated upon by Johnson & Sadhal (1985) using the argument of minimum 
surface energy. Mori (1978) presented the same criteria for the three equilibrium 
configurations using experimental data. 

The non-engulfing case of a compound drop is a situation in which the vapour 
phase is detached from the liquid phase and the two are in contact at one singular 
point. This is sometimes called bubble blowing as the vapour phase is blown away 
from the liquid phase. The complete engulfing is said to take place when the vapour 
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phase is entirely inside the liquid phase and the two can be concentric or eccentric 
to each other. While static drop configurations are governed purely by surface 
thermodynamics, the fluid motion can change the equilibrium criteria, especially for 
complete engulfing case. 

The present development focuses on the 3-singlet configuration, that is, the case 
when each of the three fluids of the system is in contact with the other two. In 
particular, we are considering a vapour bubble partially engulfed by its own liquid 
(see figure 1) .  It consists of the liquid phase at the lower part of the compound drop 
and the vapour phase a t  the upper part. These types of droplets arise in the area of 
direct-contact heat transfer. In  the present paper (Part 1) we are concerned purely 
with the fluid mechanics associated with the growth and translation of such drops. 
I n  Part 2 (Vuong & Sadhal 1989), the heat transfer is treated in detail. 

2. Statement of problem 
A schematic of a partially engulfed compound gas-liquid drop is depicted in figure 

1.  The drop consists of two parts: the liquid phase a t  the bottom and the vapour 
phase at the top. This equilibrium configuration is maintained by balancing the 
surface tensions a t  the interfaces assuming a static compound drop ; this assumption 
is valid when the drop motion is slow. Initially, a drop of mostly liquid (dispersed 
phase) at uniform saturation temperature corresponding to the hydrostatic pressure 
of the fluid column is injected into the bottom of a different immiscible liquid 
(continuous phase) which is maintained a t  a slightly higher temperature than the 
drop. As the drop rises in the continuous phase under its own buoyancy force, it 
absorbs energy from the external fluid and evaporation takes place a t  the 
liquid-vapour interface. Part of the liquid phase of the drop is turned into vapour, 
resulting in a change of size and shape of the drop. In  other words, the drop is 
growing in time. I n  the limit of the drop size being small (of the order of 1 mm) and 
a highly viscous continuous phase, the Reynolds number of the flow fields is small 
(less than the order of one) and Stokes flow can be assumed. The equations in this 
limit being linear allow a fully analytical solution. In a flow field dominated by 
viscous effects, the viscous diffusion affects the entire domain very quickly. Therefore 
we also neglect the time-dependent term and assume a quasi-steady state so that the 
steady-state solution of the flow field can be applied a t  any instant of time for the 
entire process while the drop is undergoing translation and growth. Because the 
Stokes equation is linear, it is convenient to decompose the flow field into two parts : 
one from the translation and the other from the growth. In  the translation part, the 
rise of the drop due to the buoyancy creates an external flow field. Simple continuity 
at the liquid-liquid interfaces generates internal circulation. For the growth part, the 
process is more complicated, partly because of the complexity of the geometry and 
partly because of non-uniform normal velocities at the interfaces, which will be seen 
in the later sections. These two parts can actually be lumped together but we choose 
to separate them for the sake of clarity. Because of the creeping-flow assumption and 
because the growth process is slow, the surface tension forces are assumed to be large 
enough to keep the interfaces in a spherical shape and they will not be distorted by 
the variation of the normal stress. The Stokes equation is solved for both the external 
continuous phase and the liquid phase of the drop. The flow field in the vapour phase 
of the drop need not be solved because of insignificant viscosity. Also, the flow field 
is axisymmetric. Effects of natural convection, viscous dissipation, and com- 
pressibility are all neglected. 
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FIQURE 2. Infinitesimal shape changes arising from growth. (a )  Growth due to increasing radius 
of contact circle ; (6) growth due to angular motion about the contact circle. 

The governing equations for fluid flow are as follows: 

continuity v - u ,  = 0 (i  = 1,2) ,  ( 1 )  

momentum V p ,  = piV2ui ( i  = 1 , 2 ;  no sum), (2) 

where i = 1,2 is used to denote the dispersed- and the continuous-phase liquids, 
respectively; the vapour phase is referred to as fluid 3 ;  ui are the velocities; p i  the 
pressures and pi the viscosities. The subscript i will, however, be dropped when 
referring to both liquids in general terms. The boundary and interface conditions are 
summarized below : (i) uniform free-stream velocity U ,  a t  infinity ; (ii) prescribed 
non-uniform radial velocities a t  all three interfaces due to growth ; (iii) continuity of 
tangential velocity a t  the liquid-liquid interface 1-2 ; (iv) continuity of shear stress 
at the liquid-liquid interface 1-2; (v) zero shear stress a t  the two liquid-vapour 
interfaces 1-3 and 2-3. 

The uniform free-stream velocity is not a constant but a variable of time because 
the configuration of the drop is changing as i t  grows. Since the drop is translating 
slowly and the rate of change is small, we ignore the transient term associated with 
the rate of change of the velocity, so that the terminal velocity a t  any instant can 
be determined by balancing the buoyancy force and the drag force. The growth 
velocities a t  the interfaces are a little peculiar; they include contributions of ?, which 
is the angular velocity of the interfaces about the contact circle and C, which is the 
velocity of the contact circle (see figure 2). The velocities 3 are the same at all three 
interfaces so as to maintain the same contact angles, as will be seen later. The two 
different boundary velocities C and 4 cannot vary independently but have to satisfy 
a constraint that the volume of the liquid phase of the drop is instantaneously 
constant because of conservation of total mass. This will also be discussed in the 
section on trhe solution for the growth of the drop. Since the growth arises mainly 
from the change of phase, it depends on the evaporation rate, which is governed by 
the heat transfer aspects of the system. In this paper the growth rate will be 
prescribed arbitrarily. The detailed treatment of the heat transfer is given in Part 2 .  
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3. Solution 
The set of equations (1) and (2) can be solved for the velocity and pressure 

distribution. We use the alternative stream-function formulation which requires the 
solution of the scalar fourth-order equation 

LF1 !h = 0, (3) 

where L-, is the axisymmetric Stokes operator. In a cylindrical coordinate system, 
it can be written as 

where (z, r )  are the usual cylindrical coordinates. 
Since the interfaces of the drop are assumed to be of uniform curvature, and the 

configuration of the drop exactly fits the toroidal coordinate system, we shall cast the 
Stokes equation in that coordinate system. This system has been highly useful in the 
treatment of fluid flow problems involving lens-shaped axisymmetric bodies (see 
Payne & Pel1 1960; Majumdar, O'Neill & Brenner 1974). The toroidal coordinates 
( 6 , ~ )  are related to the cylindrical coordinates ( r ,  z )  by the following transformation : 

( O < t < C o ;  - n < q < n ) .  

(6) 
c sin q 

z =  
cash 6 - cos T/  

The interfaces are identified by constant values of q ,  i.e. 7 = qI2 ,  q13 and qZ3,  where 
the subscripts correspond to the respective interfaces as shown in figure 1. The 
velocity components are given by 

and the shear stress is written as 

We now introduce the following non-dimensional variables : 

and then drop the asterisks. The solution for the Stokes equation (3) in a toroidal 
coordinate system ( 6 , ~ )  can be obtained by assuming a stream function of the 
following form : 

- - fi &q, A )  sinh*[P'i+,(cosh[) dh, 
(cash 6- cos 7): 
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where $(q,  A )  is a combination of four linearly independent solutions, 
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$(q,  A)  = cosq[A*(A)coshAv+B*(h)sinhAq] 

+sin q[C*(A) coshhq +D*(h)  sinh AT] .  (12) 

In this solution, P‘;+,(coshfl) is the derivative of the Legendre function, and thc 
coefficients A*(h),R*(A), C*(A),D*(h) are to be determined by the boundary 
conditions. 

It is convenient to work with @(f l ,  7) as the dependent variable instead of $ ( f , q ) .  
Therefore, we express the velocities and the shear stress in terms of @ ( f , q ) .  The 
velocities are 

(cosh f l -  cos 7); a@ 
sinht i3y ’ 

- 3 sin q 
2 sinh fl(cosh f l -  cos q ) 2  

I @ +  
u - _ _  ‘ - 

The shear stress can then be expressed as 

(cosh 5 - cos 7); a‘@ a2@ cosh f a@ (w - F )  + (cosh f -  cos q ) 2 ~  - 
r6 =’[ sinhf slnh2f 36 

{ -g(cosh f -  cos q )  cos q -:sin2 q +$sinh2 8 @] . (15) 
1 

sinh f(cosh 5- cos q ) ~  
+ 

These expressions will be used later for satisfying the interface conditions. 
Since the Stokes stream function obeys a linear partial differential equation, 

different flow fields can be solved separately and later combined to form the complete 
solution. Therefore, for convenience, the solutions are decomposed into two parts : a 
flow field resulting from the translation of the drop and a flow field resulting from the 
moving boundaries of the drop due to the growth. The stream functions in the two 
liquid phases can thus be expressed as 

where the superscripts t and g refer to translation and growth, respectively. The 
subscripts 1 and 2 correspond to the continuous and the dispersed liquid phases, 
respectively. Clearly, we may also write 

3.1. Translational flow jield 

The solution for the continuous phase can be written as 

where 
# ( q ,  A )  = F ( q ,  A )  + cosq[A?(h) coshhq +B?(A) sinh A q ]  

+sinq[C~(A)coshhq+D~(h) s inhhq] .  (19) 

In this expression, F ( q ,  A )  appears from the expansion 

- .] = l : F ( y ,  A )  P’gti,(cosh () dA, (20) 
1 

(cosh f l  - cos 7); (cosh f + cos 7)s 
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where the first term on the left arises from the uniform stream. The detailed 
derivation is given in the Appendix.? As explained there, an expansion for just the 
uniform stream leads to difficulties and the additional term is necessary for the 
integral expansion. The expressions for F(7 ,  A ) ,  F(7, A )  and T ( 7 ,  A )  are found to be 

--x < 7 < It, 

where the primes stand for a/aq. 
The solution for motion of the dispersed-phase liquid can be written as 

where 

dz(7 ,h)  = c o s ~ [ E : ( A ) c o s h h y + F ~ ( h ) s i n h h ~ ]  

+sinq[G:(h) coshhy+H:(h)sinhhri]. (25) 

The coefficientsA:(h), B:(h), C:(h), D:(h), E:(h),F:(h), G f ( h ) ,  H:(h)  are determined 
from the boundary conditions. 

3.1.1. Boundary con,ditions for translation 

( i )  Constant stream-function value a t  boundaries 7 = v13, 712, yZ3  : 

dlt)(713, A )  = $it)(71z? = d c ) ( 7 1 2 >  = $ 2 ) ( 7 2 3 ,  = O .  (26) 

(ii) Zero shear stress a t  boundaries 7 = 713, rz3 : 
#:t)”(yI3, A )  = &)”(723, A )  = 0. 

d?Trl2, 4 = dit)r(712, 4. 

Pl d : t ) 3 1 2 , 4  = Pz d P n ( 7 1 2 ,  A ) .  

(27) 

(28) 

(29) 

Here again, the primes stand for a/aV. With these eight boundary and interface 
conditions, the eight unknown coefficients can then be determined. Instead of using 

(iii) Continuity of tangential velocity a t  boundary 7 = r12: 

(iv) Continuity of shear stress a t  boundary 7 = q12: 

t The Appendix consisting of various integral expansions is available upon request from the 
Editor or from the authors. 
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the genera! solutions asAgiven by (19) and ( 2 5 ) ,  we choose the following form for 
functions q51t)(7, A )  and q5it)(7, A )  : 

dlt)(7> 4 = 4 7 > 4  

1 
1 

cos(7-712)Sinhh(7-712) - sin (7-712) CO“AA(7-712) 
‘OS (713-712) sinh ’(718-712) 

‘OS (713-7) SinhA(713-7) 

sin (713-712) ‘Osh ’(713-712) 

sin (713-7) ‘Osh ’(713-11)) 

+ A m [  

‘OS (713-712) SinhA(713-712)-sin (713-712) ‘Osh ’(713-712) 

which satisfies &)(y13, A )  = q$t)(712, A )  = 0;  and 

1 
1; 

cos(7-712)Sinhh(7-7,2) - sin (7-712)COSh47-712) Bit)(r, A )  = C,(A) 
‘OS ( 7 2 3 - 7 1 2 )  sinh A(r/23-712) sin (723-712) C0ShA(723-11)12) 

(31) 

which satisfies &)(q12, A )  = &)(723, A )  = 0. The four coefficients A,(h),  Bt(A), C,(A), 
D,(h) are determined by satisfying the remaining four boundary conditions. After a 
great deal of algebra, we obtain: 

‘OS (723-7) SinhA(723-79) - sin (923-7) C0ShA(723-7) 
‘OS (723-712) SinhA(723-712) sin (723-712) ‘Osh ’(723-712) 

+ D t ( 4  [ 

F”(vl3, A )  -F(q13, A )  (A2 - 1) - 2A(sin B,/sinh Ad,) F ( T ~ ~ ,  A )  
2A(tan O1 coth A8, + cot O1 tanh A8,) A t ( 4  = > 

where $1 = 713-712> ‘2 = 723-7129 rp = /%/f%, 
a,@) = tan 8, - A  coth A8, + cot 8, + A tanh he,, 

bl(A)  = -(tan82-AcothA82+cot82+AtanhA82), 

i )  
- A 

-At(A) (cos 8, sinh A8, sin 8, cosh Ad, ’ 

u2(A) = crp(tan 8, coth A$, +cot 8, tanh A$,), 

b2(A) = - (tan 8, coth h8, + cot O2 tanh M2), 
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3.2, Flow Jield resulting from the growth of the drop 
As stated earlier, the growth of the drop is separated into two parts: (i) growth 
resulting from the angular motion of the interfaces about the contact circle (?j) ; and 
(ii) growth resulting from the increasing radius of the contact circle (6) as shown in 
figure 2. The two velocities 6 and ?j cannot vary independently but are related by the 
imposition of the total mass conservation of the liquid and the vapour. Bearing in 
mind that the liquid-to-vapour density ratio is approximately lo3 under atmospheric 
conditions, we may let the liquid-side velocity of the liquid-vapour interface be equal 
to velocity of the interface itself. In addition, the conservation of mass leads to the 
condition that the volume of the unevaporated portion of the liquid phase of the drop 
must remain instantaneously constant while the drop shape is changing to a new 
configuration. 

The volume of the liquid phase can be written as 

where (44) 

is the volume of a spherical segment. By imposing the volume of the liquid phase to 
be constant = 0 and carrying out the algebra, we obtain 

. (45) 
C sin ~ ~ ~ ( 2  - cosy23) C sin y12(2 - cos y12) - - 1 

ci [ (1 - cos yz3)2 (1 - cos y12)2 (1 - cos T12I2 

Using the following non-dimensional variables : 

and dropping the asterisks, we obtain the relationship between E and ?j as follows: 

C sin ~ ~ ~ ( 2  - cos y23) C sin y12(2 - cos yI2) 
’ (47) - - 1 

] = (1-cosyz3)2 (1 - cos y12)2 

We now derive the stream-function values on the interfaces arising from these 
boundary veloci ties. 

3.2.1. Boundary velocities due to 4 
Holding c constant, we have 

q’ I C C 
ds = dy* i=  

cash 6 -  cos 7 cash 6 - cos 7 

(cosh~-cOs~)*  &,hJ’= c?j u = -  
9 c2sinh( a t  cosht-cosy‘ 

After non-dimensionalizing and dropping the asterisks, one gets 

a=- a@(g) qsinht  

at (cash 6- cos 7)3 ’ 
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Integration with respect to < gives 

S .  T .  Vuong and S.  S .  Sadhal 

(g) - - 1 i or @(@ = - 1 i '* - 2 (cosh(-cosp)2 ' 2 (cosht-cosy); 

on the free surfaces. 

3.2.2. Boundary velocities due to C 
Holding 7 constant this time, 

(49) 

The transformation of the velocities u, and u, from cylindrical to toroidal coordinates 
u5 and u,, yields 

Csinhtcosp . 6 cosh < sin 7 

We only take into account the normal velocity contribution but ignore the tangential 
velocity since the tangential component can be lumped into the solution for the 
translation of the drop. Thus, 

(cosh 6 - cos p)' a@(.@ C cosh < sin p 
(52)  u =-  e- -- 

'I c2sinh( a( Gosh 6- cos 7 ' 

After non-dimensionalizing and dropping the asterisks, one obtains 

a@ig) - C sin p sinh < cosh < 
a< (cosh 5- cos p ) 3  
-- 

Integration with respect to 5 gives 

or 

C sin p - (g) 1 Csinpcosy 
" - 2 (cosh<-cosy)* cosh<-cosy 

(53)  

(54) 

(55) 

on the free surfaces. 

boundary conditions for @(g) at the interfaces, 
Combining the two boundary conditions resulting from 4 and C forms set of total 

1 4-Csinqcosp 
@@) - - ,-Csinp(cosht-cosy)b, 

2 (cash < - cos 7 ) ~  BC - 

where p is equal to plz, pI3 or p Z 3 .  By substituting the above expression for @@A into 
the shear stress equation (15), we obtain 

(cosh 6 - cos 7); i3'@(g) 4 -6 sin a cos p 
sinh 6 [F lBc,-'sin2p (cosh 6 -  cos 7): 

3 Csina-?jcosp 3 Csinpcosp Esinpsinh2< +- a + -  4 (cosh <- cos a)' 

' f , !  IBc = 

.]. (57) 2 (cosh <- cos 7);- (cosh <- cos 7)s 

where again a can be chosen to represent any of the interfaces. The expressions for 
@& and rt1/IBC at the interfaces must be presented in the form of the gcneral solution 
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of the Stokes equation so that the boundary conditions can 
words, we wish to expand (56) and (57) in the following form 

62 7 

be applied. In  other 

where the two functions A ( g ,  A )  and N ( y ,  A )  are to be determined. It should be noted 
that a2@(g)/ag2 is still an unknown function. 

To expand the expression for @EL as given in (56) we need to use the integral 
expansions of (cosh 6- cos 7): and (cosh 6- cos g)-k. These are given by 

1 1 cash h(n - 171) ]sinh26P_;,,,(cosh6)dh (-a < g < n) (60) 
+z/a coshhn 

and 

1 
(cosh 6 - cos g); 

sinh26PI-t+,(cosh 6)  dh (-x < < n). 1 1/2sinhh(~-Igl) tanhhx - 
sin lgl cosh An: (1  - cos 7); 

The detailed derivations are given in the Appendix which is available upon request 
(see earlier footnote in 53.1). By linearly combining the two expansions, one 
can obtain the expansion for the right-hand side of (56). As a result, we can identify 
A ( y , h )  as 

sinh h(n - Igl) tanh An - 
sin (71 cosh An (1 - cos 

(q  - C sin g cosg) 
1 h  

A ( g ,  A )  = - ~ 

2 (h2+i )  

+ h tanh An (1 - cos 7); . (62) 1 
Similarly, for ~ ~ ~ 1 ~ ~ ,  we use the integral expansions for (cosh 6- cos g)-i, (cosh 6- 
cos g)-g and (cosh 6- cosy)-%. The expansions for the last two expressions have also 
been derived in the Appendix. These are given by 

(1 - cosy): 
x { A  sin 171 cosh h(x - 171) + cos 7 sinh h(n - 1g1)> - 

x sinh26P-3ih(cosh 6 )  dh ( -n < g < n) (63) 
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41/2 (3 cos q sinh h(n- (71) 
1 

and 

(cosh 6 - cos q): - - JOm &[ 3 sin5 171 cosh An 

tanh An + (1 + h2) sin' 171 sinh A(n- 171) + 3h sin 171 cosh A(n - Iql)} - 

x sinh'f;Pl-;+,(cosh 6 )  dh (-n < y < n). 
Consequently, the expression for N ( q , A )  can be written as 

(4 cosq -6  sin q) 
3h 

"q, 4 = ___ 
4(h2 + i )  

tanh An 
{ A  sin JqI cosh h(n - 171) + cos q sinh h(n- (qJ)} - 

2 4 2  
sin3 (q( cosh An 

A +-(q - C sin q cos q) 
A2+4 

[ [3 cos 7 + (1 + h2) sin2 1q1] sinh A(n - 171) + 3h sin Iql cosh A(n - 171) 
4 2  sin3 1st cosh An 

3 sin2 7 tanh An 
tanhhn 1 - C sin q cos q sinhh(n-/qJ) - 

sin (q( cosh An (1 - cos q); 
3h 

8 ( 1 - ~ 0 ~ 7 ) $  ] - 2 ( h 2 + $ )  

C sin q cosh h(n - (71) 
cosh An 

- 2 4 2  

Now, referring to the continuous phase and the liquid dispersed phase by subscripts 
1 and 2, respectively, we write the set of functions @{@([, q) (see (17)) as 

m 

@fg)(E, q) = 1 djg)(?l, A )  sinh2f[P';+,(coshE) dh, 
J o  

where 

dig)(q, A )  = cos q[AX(A) cosh hq +B,*(h) sinh hq] + sin q[C,*(h) cosh Aq -t D,*(h) sinh Aq] 
(67) and 

&)(q, h)  = cos q[E,*(h) cosh hq +B,*(h) sinh hq] +sin q[C,*(h) cosh hq 

+H:(h)  sinhhq]. (68) 

Here, the coefficients, A,*(h), B:(h), Cffh),  D,*(h), E:(h), F:(h) ,  G,*(A) and H,*(h) are 
to be determined from the following boundary conditions : 

( i )  At the boundaries q = q13,q12,q23,  we have 

dlg)(v13, = A ( q 1 3 ,  d!g)(q129 '1 = A ( q 1 2 ,  '1, (69) 

dig)(712? ') = A(q12?? d(zg)(723, = A(q23,  '1, (70) 

dYn(7I*3,A) = w q * 3 >  4, dP"(q23,h) = N ( q 2 3 , 4 ,  (71) 

where A ( q , A )  is given by (62). 
(ii) The conditions for zero shear stress at boundaries q = qI3 ,  qZ3 require 

where N(q, A )  is given by (65), and the double prime stands for a2/aq2. 
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(iii) The continuity of tangential velocity at boundary 7 = y12 requires 

d1g)1(7121 4 = dig)1(712, A ) ,  (72) 

where the single prime stands for a/i37. 
(iv) The continuity of shear stress at boundary 7 = rl2 leads to 

P1[dP)r+/3121 4 - J-(71214l = P2[d!3%12, 4 -M(7123 4 1 .  
We now choose the following forms for functions &(7, A )  and $ig)(7, A )  : 

dml, 4 

(73) 

These forms are selected so that the boundary conditions given by (69) and (70) are 
satisfied. The four coefficients A,(h),  B,(h), C,(h), D,(A) are determined from the 
remaining four boundary conditions given by (7 1)-( 73). After some rather lengthy 
algebra, we obtain 

I (76) 
M(7131 l) + 2h (sin B1/sinhAB1) d(712! -N(7131 ') 

2h(tan 8, coth he, + cot tanh he,) A g ( 4  = 

where 
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3.3. Combined translational and growth flow Jield 

A t  this point, the combined flow field is simply a sum of the translational and the 
growth flow fields as expressed in (16). This yields the following expressions for the 
stream €unctions. 

In the continuous phase we have 

where 

The coefficients A,(h) ,  Ag(h) ,  &(A) ,  B,(h), A ( 7 ,  A )  and F(7,  A )  are given in ( 2 l ) ,  (32), 
(33), (W, (76), (78). 

Similarly, we obtain the stream function for the liquid region of the dispersed 
phase to be 
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4. Results and discussion 
The information on the flow velocities and drag force is useful for modelling the 

systems involving such compound drops. The results from the present analysis are 
applied to  the heat transfer problem of the evaporating 3-singlet compound drop 
which is treated in Part 2. The discussion here is restricted to the basic aspects 
pertaining to the drag force and the flow field. 

4.1. The drag force 
Following Payne & Pel1 (1960) the expression for the drag force can be written as 

where the function $(O,h) can be obtained from (84). Although the Aow geometry 
consists of sharp corners a t  the moving contact line, Dussan-type non-integrable 
stress singularities (see Dussan V. 1973) are not present. This is because of the 
absence of any solid boundaries. The drag force is therefore finite. 

As one would expect, the drag force on the compound drop depends on many 
parameters besides the viscosity of the continuous phase, the drop size and the free- 
stream velocity. Among the important parameters are the viscosity ratio up = pl/p2 
between the dispersed phase and the continuous phase ; the drop geometry, i.e. the 
liquid to vapour volume ratio together with contact angles 8,, 02, 03, which depend 
on the fluid systems being used; and the ratio of the growth to translational 
velocities, C/U,. Since this consists of five independent parameters, instead of 
producing elaborate tables with various values of each parameter, we restrict our 
discussion to a few special cases. A sample calculation of the drag force in the case 
without growth is shown in figure 3. We choose glycerol as the continuous phase and 
pentane as the dispersed phase with a set of contact angles 8, = 171", O2 = 32", 8, = 
157' (refer to figure 1). The drag force is non-dimensionalized using a constant 
reference radius r,,, instead of the contact circle radius c ,  which varies with the drop 
configuration. Here we define rref as the radius of a sphere having the same volume 
as the compound drop, i.e. 

$7cT;ef = v, + V". (88) 

The drag force P/(8zp,  r,,, U,) is plotted against the liquid-to-vapour volume ratio 
V,/V, with the viscosity ratio uF = ,ul/p2 as a parameter. The total volume of the drop 
is kept constant while the liquid-to-vapour volume ratios are varied. Limiting cases 
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FIQURE 3. Drag force without growth. 

of large or small volume ratios lead to liquid or vapour spheres, respectively. The 
plots show that id the limiting case of a drop consisting of mostly vapour, the drag 
force approaches the value for the bubble drag (P = 4xp1 rref Urn),  For a compound 
drop that is mostly liquid, we obtain the liquid sphere drag as given by the 
Rybczynski-Hadamard formula. For moderate liquid-to-vapour ratios, the plots 
exhibit humps showing a higher drag than that for a liquid sphere of volume 
(V, + V,) and viscosity pz. This appears to be a geometrical effect giving rise to greater 
resistance mostly due to  the reduced available circulation space in the liquid portion 
of the dispersed phase. The deviation from sphericity in this particular configuration 
does not appear likely to cause this increase in drag, especially since the shape is 
elongated in the direction along the path of motion. 

In figure 4, the drag force is plotted against volume ratio including both 
translation and growth. Here the growth rate CIU, is chosen to be equal to 0.01 as 
an example. We see that the right-hand side of the curves changes very little as 
compared to the no-growth case in figure 3 while the left-hand sides of the curves 
move upward. This is actually an effect arising from the choice of the contact circle 
as a reference frame. With the velocities being relative to the centre of the contact 
circle, the non-uniform normal velocities a t  the interfaces from the growth of the 
drop result in a net translatory movement of the drop relative to the contact circle. 
This generates additional drag besides the drag resulting from the applied 
translational velocity U,. To obtain reasonable results we move the reference frame 
to the centroid of the compound drop. It is not difficult to obtain the centroid 
velocity, 8, once we have C and 4. The centroid velocity is plotted in figure 5.  This 
velocity is in the opposite direction to that of the uniform stream, Urn, and increases 
rapidly as the drop approaches vapour phase. By scaling the drag force with the 
velocity relative to the centroid of the drop, i.e. the velocity (Urn - d )  instead of Urn, 
we obtained a familiar trend for the drag force, as shown in figure 6. Here we see that, 
with growth taking place, the middle hump for the moderate liquid-to-vapour ratio 
is more pronounced than for the case with no growth. 

Nearly all of the experimental data on the drag involve heat transfer effects and 
therefore comparisons with the data have been made in Part 2. 
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FIGURE 5. Centroid velocity as a function of volume ratio. 

4.2. The $ow field 

In  order to obtain the flow streamlines, one would require the numerical calculation 
of the integrals in (83) and (85). These calculations have been carried out by Oguz's 
(1987) method which involved the use of hypergeometric function representation for 
P-;+,(cosh g). The flow streamlines are presented separately for growth and 
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FIGURE 6. Drag force on a compound drop with growth (6/Um = 0.01) - centroid reference 
frame. 

FIGURE 7 .  Streamlines for pure translation with large liquid volume. 

translation along with the combined flow field. Figures 7-9 show the flow patterns 
when the dispersed phase is almost completely liquid. In  figure 7 we see the 
translational flow field, which is more or less as expected. The effect of growth is seen 
in figure 8, where we observe the contribution of the angular velocity by the outgoing 
streamlines a t  the interfaces. These streamlines are not normal to the interfaces 
because of the effect arising from C which causes a small amount of recirculation in 
the liquid part of the dispersed phase. The combined effect of translation and growth 
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FrauRE 8. Streamlines for pure growth with large liquid volume. 

FIGURE 9. Streamlines for combined translation and growth with large liquid volume 
(&/Urn = 0.58; c ? ~ / U ,  = -0.28). 

is given in figure 9; the motion in the continuous phase shows minor influence from 
growth except for a small portion near the front and the rear stagnation points. 
However, the motion in the dispersed phase is still dominated by the growth. 

When the liquid part of the dispersed phase is considerably smaller than the 
vapour, the buoyant force is likely to be large and therefore the translational 
velocities would be comparable with the growth velocities. The translational flow 
field is similar to the one shown in figure 7 .  The flow arising from growth, however, 
is somewhat different from the previous case. The flow streamlines are presented in 
figure 10. The combined effect growth and translation is given in figure 11. Because 
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FIGURE 10. Streamlines for pure growth with small liquid volume. 

FIGURE 11. Combined translation and growth streamlines with small liquid volume 
(CIU, = 0.094; c?)/U, = -0.14). 

of greater translational velocity, the growth effect has a weaker role. The dominance 
of translation is seen in both the dispersed and the continuous phases. The effect of 
growth appears as a secondary vortex near the real stagnation point. 
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